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Abstract. A model describing the leptoproduction of � mesons is considered. For the amplitude of the
photon dissociation into a qq̄ pair, the light-cone wave function is used. Scattering of the colorless qq̄
pair off the nucleon is computed within reggeon exchange phenomenology. The transition of the scattered
quark and antiquark into the final � meson is treated with the aid of the parton–hadron duality concept.
Numerical calculations of R = σL/σT and r04

00 describe the world data at Q2 < 4 GeV2 rather reasonably.
The calculations of the � meson spin density matrix show that the computed matrix elements except r04

00
are in good agreement with the available experimental data at Q2 up to 8 GeV2 and the total mass of the γp
system greater than 4 GeV. The Regge phenomenology predictions at the highest experimentally available
energies agree with both the HERA data and calculations performed within the perturbative QCD approach
even for very high Q2 (∼ 10–20 GeV2). The predicted scale of the S-channel helicity non-conservation is
in reasonable agreement with the experimental data.

1 Introduction

Diffractive vector-meson photoproduction and leptopro-
duction in electron, positron, and muon beams have been
under investigation for many years (see, for instance, the
reviews in [1,2]). The vector-meson-dominance model and
generalized vector-meson-dominance model were used to
describe the available data at lowphoton virtualityQ2 [1,2].
The S-channel helicity conservation (SCHC) was found to
be a good approximation valid within a 10% accuracy. In
the last decade, the interest to diffractive vector-meson pro-
duction in deep inelastic scattering of high energy leptons
off nucleons rose since perturbative QCD (pQCD) was ar-
gued to be applicable for the description of hard diffraction.
The most intriguing predictions were maybe those [3–7]
made in the framework of pQCD that the differential cross
section of the diffractive vector-meson production in scat-
tering of virtual photons from the proton at high Q2 +m2

V
and small Bjorken variable x is proportional to the square
of the gluon distribution G2(x, Q2) (more precisely the
skewed gluon distribution for non-forward meson produc-
tion) in the target, where mV is the vector-meson mass,
V = �, ω, Φ, J/Ψ etc. The spin-dependent gluon distribu-
tion can be also extracted from experimental data on the
double spin asymmetry in the reaction

γ∗ + p → V + p′ (1)

at high Q2 + m2
V and small x [8]. It was shown that the

hard diffraction (1) can be described in the framework
of perturbative QCD even for the low momentum-transfer
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squared t between the incoming and outgoing proton if
the hard scale Q2 + m2

V is large enough (see below). The
photon four-momentum is denoted by q, Q2 = −q2 > 0,
v is the vector-meson momentum, v2 = m2

V , t = ∆2,
∆ = v − q = p − p′, where p/p′ denotes the momentum of
the incident/outgoing proton (p2 = (p′)2 = M2).

It is well known that the process (1) has three stages
if the photon–proton center-of-mass (CM) collision energy
W is high enough (W 2 = Sγp = (q+p)2). First, the virtual
photon splits into a quark–antiquark pair. According to the
uncertainty principle, the lifetime of the qq̄ fluctuation τγ

(we take � = c = 1) is [4]

τγ ∼ q+/
[
Q2 + M2

i

]
, (2)

where Mi in (2) is the mass of the qq̄ pair, q± = (q0 ±
qz)/

√
2, and q0 and qz =

√
q2
0 + Q2 denote the energy and

three-momentum of the virtual photon, respectively (we
consider the center-of-mass γ∗p system in which the Z-axis
is directed along the photon three-momentum and the X-
axis belongs to the lepton scattering plane). If Q2 > M2

i
formula (2) in the rest frame of the target for the � meson
production can be rewritten [4] as

τγ ∼ 1/[Mx] , (3)

where x = Q2/(2p · q) is the famous Bjorken variable.
Second, scattering of the quark–antiquark pair on the pro-
ton at high energies for large Q2 + m2

V and small x can
be described in the double-logarithmic approximation of
pQCD through two gluon exchange ladder graphs. As was
shown [4] in this approximation the interaction time τi
is much smaller than τγ which means that the qq̄ pair is
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prepared long before the interaction with the proton. The
dissociation length lγ = cτγ is assumed to be much greater
than the proton radius rp being of the order of 1 fm. The
third subprocess is the creation of the final vector meson
from the scattered quark and antiquark. The formation
time for −t � Q2,

τf ∼ q+/M2
f , (4)

is greater than the photon dissociation time [4], hence it is
much greater than the interaction time and the formation
length lf = cτf � rp. The mass of the quark–antiquark
pair after scattering on the proton is denoted in (4) by Mf

(Mf ∼ Mi).
The hard scale needed for the applicability of pQCD is

usually assumed to be

Q2
0 = (Q2 + m2

V )/4 . (5)

But as was argued in [6] the pQCD factorization scales for
the production of the vector mesons with the longitudinal
and transverse polarizations are

Q2
L ∼ 0.15(Q2 + m2

V ), Q2
T ∼ 0.07(Q2 + m2

V ) , (6)

respectively. This means, strictly speaking, that even the
experimental data obtained at the HERA collider for the
highest Q2 correspond to a semiperturbative regime of qq̄
scattering off the proton. Nevertheless, numerical calcu-
lations of the cross sections are in reasonable agreement
with the available data for the region Q2 > 4 GeV2 (see
below). Moreover, the calculations [9–11] of the � meson
spin density matrix carried out in the pQCD framework
for W = 75 GeV are in unexpectedly good agreement with
the high energy data [12,13] obtained at the HERA collider
even for Q2 < 1 GeV2.

We attempt in the present work to describe experimen-
tal data on diffractive � meson production at Q2 ∼ a few
GeV2 for low Bjorken variable x using the Regge formalism
for the amplitude of qq̄ pair scattering off the target. The pa-
rameters of the quark–reggeon verticeswere obtained in [14]
with the aid of the parameters of the nucleon–reggeon ver-
tices found in [15–17] by fitting the experimental data on
hadron–nucleon scattering. Exchanges with the pomeron P
and secondary reggeons f , �, ω, A2 are taken into account.
We do not restrict ourselves to the one reggeon exchange
approximation as in [18] but consider one, two and three
reggeon exchanges, besides one and two secondary reggeon
exchanges being taken into account only.

This paper is organized as follows. The basic formulae
are presented in Sect. 2. The comparison of the calcula-
tions with experimental data and the theoretical predic-
tions obtained in the perturbative QCD framework is made
in Sect. 3. The most important results are summarized in
Sect. 4.

2 Basic formulae for � meson production

First, we are going to recall some kinematic relations. Let
ν and qlab =

√
ν2 + Q2 be the virtual photon energy and

three-momentum in the rest frame of the initial proton (the
laboratory system) of which the axes are parallel to those
of the CM system. Then the energies of the � meson and
the scattered proton in the laboratory system are E� =
ν + t/(2M), E′

p = M − t/(2M), respectively. The angle
between the total three-momentum of the � meson and the
photon momentum η can be found from the relation

cos η =
2ν2 + Q2 − m2

� + t(1 + ν/M)√
ν2 + Q2

√
(2ν + t/M)2 − 4m2

�

, (7)

the momentum-transfer squared belonging the interval
|tmin| < |t| < |tmax| where

tmin/max = 2M2

− 2M2

(2Mν + M2 − Q2)

×


 (ν + M)

(
ν + M − m2

� + Q2

2M

)

∓
√

(ν2 + Q2)

×

ν2 + Q2 − (1 + ν/M)

(
m2

� + Q2)

+

(
m2

� + Q2

2M

)2



1/2

 . (8)

The formula for the time and longitudinal components of
∆ in the laboratory system reads

∆lab
0 =

t

2M
, ∆lab

Z =
t(1 + ν/M) − m2

� − Q2

2
√

ν2 + Q2
. (9)

The transverse part of the momentum transfer ∆T will
be defined below. The transverse part of any three-vector
b will be denoted bT = (bX , bY , 0). The four-momentum
of the photon in the γ∗p center-of-mass system is q =
(q0, qZ ,0) where

q0 =
Mν − Q2

W
, qZ =

M
√

ν2 + Q2

W
=

M

W
qlab , (10)

with W 2 = 2Mν + M2 − Q2. The � meson momentum
v = (v0, vZ ,vT) has the components in the CM system(
|v| =

√
v 2

Z + v 2
T

)

v0 =
2Mν + m2

� − Q2

2W
,

|v| =

√
(2Mν − Q2 − m2

�)2 − 4m2
�M

2

2W
,

vZ =
W

2M
√

ν2 + Q2
(11)
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×
[
Mν + t − Mν(M2 + m2

�) − M2(Q2 − m2
�)

W 2

]
,

and vT = ∆T, |vT| =
√

v2 − v 2
Z . The momentum transfer

∆ = v − q = (∆0, ∆Z ,∆T) is given by the relations

∆0 =
m2

� + Q2

2W
,

∆Z =
W

2M
√

ν2 + Q2

[
t − (m2

� + Q2)M(ν + M)
W 2

]
,

∆2 = ∆2
T + ∆2

Z = −t +
(m2

� + Q2)2

4W 2 . (12)

If the conditions

x � 1 , ν � M , |t| < M2 (13)

are fulfilled it follows from (12) that both ∆+ and 2∆+∆−
are small and we may put ∆+ ≈ 0 in our calculations in
the CM system (the precise relation ∆+ = 0 is valid in the
Breit system). Indeed, one has from (12)

−
√

2∆+ = −∆0 − ∆Z ≈ −t
W

2Mν
+

(m2
� + Q2)M
2Wν

≈ − t

W
+ M2 (m2

� + Q2)
W 3 � |∆T| ,

−2∆+∆− ≈ t2

W 2 − t

W 2 (m2
� + Q2) − tmin � ∆ 2

T , (14)

where tmin ≈ −M2(m2
� + Q2)2/W 4 ∼ −M2x2, which fol-

lows from (8) if (13) are valid. Neglecting ∆+ one has
t = 2∆+∆− − ∆2

T ≈ −∆2
T ≡ −∆2

T (we suppose that
∆2

T � |tmin|). If (13) are fulfilled ∆lab
+ in the laboratory

system is given by the approximate relation

√
2∆lab

+ = ∆lab
0 + ∆lab

Z ≈ t

M
− m2

� + Q2

2ν
, (15)

which follows from (9). Formula (15) shows that the
relation ∆+ ≈ 0 which is important for our consideration
(see below) is not valid in the laboratory system at |t| ∼ M2

even in the limit ν → ∞. Indeed,
√

2∆lab
+ ≈ −∆T

√−t/M2

in this case, hence |∆lab
+ | � ∆T if −t � M2. This explains

why we prefer to calculate all observables in the CM system
rather than in the laboratory system.

According to the physical picture described in the In-
troduction the amplitude of process (1) can be written as
a product of three factors:
(i) the amplitude of the photon dissociation into a quark–
antiquark pair;
(ii) the amplitude of scattering of the colorless qq̄ pair off
the proton;
(iii) the amplitude for the scattered quark and antiquark
to create the final meson. In the light-cone perturbative
theory [19], the photon wave function looks like [4, 19,20]

Ψ
(µ)
λ,ν (kT, z) =

− eeq

√
z(1 − z)

ūλ(kT, z)ε(µ) · γvν(−kT, 1 − z)
z(1 − z)Q2 + m2

q + k2
T

,(16)

where e is the positron electric charge, eq = 2/3 or −1/3
denotes the fractional charge of a quark with flavor q =
u, d. The light-cone components of the photon, quark and
antiquark momenta are respectively q = (q+, q−,0), k1 =
(k1+, k1−,kT), k2 = (k2+, k2−,−kT). Their components
obey the relations q− = −Q2/(2q+), k1+ = zq+, k2+ = (1−
z)q+. Both the quark and antiquark are on mass shell, k2

1 =
2k1+k1− − k2

T = m2
q, k2

2 = 2k2+k2− − k2
T = m2

q, with mq

being the quark mass. The bispinor uλ(kT, z) (vν(−kT, 1−
z)) in (16) describes the quark (antiquark) with the helicity
λ/2 (ν/2) in the infinitemomentum frame [21]. The product
ε(µ) · γ is the scalar product of the Dirac matrices and the
photon polarization vector ε(µ) given by the relations

ε(±1) = − 1√
2

[±ex + iey] , ε(0) =
(

q+

Q
,

Q

2q+
,0
)

, (17)

where the unit vectors ex, ey are parallel respectively to
the X- and Y -axes in the CM system. Formula (16) gives
for the transverse polarization of the photon

Ψ
(±1)
λ,ν (kT, z) = (18)

eeq
δλ,ν(1 ± λ)mq − δλ,−ν(1 − 2z ∓ λ)(±kx + iky)√

2
[
z(1 − z)Q2 + m2

q + k2
T

] ,

and Ψ
(0)
λ,ν for the longitudinal photon polarization looks like

Ψ
(0)
λ,ν(kT, z) = −eeq

2Qδλ,−ν

Q2 + M2
i

, (19)

with Mi being the mass of the qq̄ pair before scattering

M2
i =

m2
q + k 2

T

z(1 − z)
, (20)

and δj,k denotes the Kronecker symbol. From here on, the
limit mq → 0 will be considered; hence the helicities of
the quark and antiquark become Lorentz invariant quan-
tum numbers.

The amplitude Fλ′ν′n′,λνn of qq̄ pair scattering off the
proton in the hadronic center-of-mass (HCM) system is
calculated in the helicity representation where λ, ν, n (λ′,
ν′, n′) are the helicities of the incoming (outgoing) quark,
antiquark and proton, respectively. The Z-axis of the HCM
system is parallel to the photon three-momentum q and the
Y -axis is directed along the three-vector q×∆T (for more
details see [22]). The formulae for the amplitudes of one,
two and three reggeon exchanges are given in [14]. Contri-
butions of pomeron and secondary reggeons ω(782), �(770),
A2(1320) and f(1270) are considered in the present work.
The proton reggeon vertex for natural parity exchange
looks like [23–26]

Rn′n(∆) = RS(∆2)δn′,n +iRY (∆2)(s ·ez ×∆T)n′n , (21)

where ez is the unit vector along the Z-axis (the photon
three-momentum) and s = (σx, σy, σz) is a set of the Pauli
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matrices acting on the proton helicity variables. The func-
tions RS and RY in (21) were chosen in the Gaussian form

RS(∆2) = rS exp{b2
St}, RY (∆2) = rY exp{b2

Y t} , (22)

with the parameters rS , bS , rY , bY found in [15–17]. As
was demonstrated in [15–17] the differential cross sections
and polarizations in elastic hadron–nucleon scattering and
charge exchange reactions in fixed-target experiments at
beam energies 10 to 100 GeV and |t| ≤ 0.5 GeV2 can be
described rather well with this set of the vertex parame-
ters and parameters of the Regge trajectories. To get the
parameters of the quark–reggeon vertices from the nucleon–
reggeon vertices, the nucleon was treated in [14] as a three
quark system whose spin structure is described by the
non-relativistic quark model [27]. This assumes that the
constituent quarks are considered. We suppose that the
transformation of the current quark and antiquark into the
constituent ones occurs due to irradiation of soft gluons
and this process does not significantly change the momen-
tum distribution. Hence the momentum distribution of the
constituent quark/antiquark before scattering off the pro-
ton can be described with the wave functions (18) and
(19). The approach used in [18] is close to that consid-
ered here but only spectator graphs are taken into account
in [18] when only one constituent of the qq̄ pair is involved
in the interaction with the proton via reggeon exchanges.
The vertices used in [18] are not Gaussian and they take
effectively into account few reggeon exchanges in specta-
tor graphs. In our approach, non-spectator diagrams when
both the quark and antiquark exchange reggeons with the
target are taken into consideration.

There is no good light-cone wave function of the � me-
son in the literature; therefore we make use of the approach
proposed in [5] based on the parton–hadron duality. Since
the � meson has JP = 1− quantum numbers one considers
the “open” qq̄ pair production by the heavy photon on
the proton with JP = 1− and a mass within the � meson
mass region. This qq̄ state (uū and dd̄) is transformed into
� (which decays into two pions practically with the 100%
probability), ω mesons and a non-resonant system of pi-
ons with JP = 1− and a total mass Mf . We suppose that
the total angular momentum of the final qq̄ system (after
scattering off the nucleon) is conserved in transformation
of the current quark and antiquark into the final hadrons
which assumes the absence of any additional interaction of
the qq̄ pair with the target in the fragmentation (approx-
imation of independent fragmentation). This assumption
is reasonable since the formation length lf is supposed to
be much greater than the nucleon radius. The ratio of
the production cross sections of the ω and � mesons is
σω/σ� ∼ (eu + ed)2/(eu − ed)2 = 1/9 since the meson fla-
vor wave functions in the SU(3) scheme are as follows:
ω = (uū + dd̄)/

√
2, � = (uū − dd̄)/

√
2. The non-resonant

ππ background in the mass region 0.6 < Mf < 0.9 GeV is
typically a few per cents (see for instance [28–30]). Hence
one may calculate the spin density matrix of the qq̄ system
and identify it with the � meson spin density matrix. It
follows from the above discussion that the calculations and
experimental data on the pion angular distribution would

be in better agreement if the background contributions
were not subtracted.

Let the momenta of the scattered quark and antiquark
be p1 and p2. Since the light-cone component ∆+ of the
momentum transfer is negligibly small, then p1+ and p2+
coincide with the light-cone components of the initial quark
and antiquark (k1+ and k2+), respectively. The sum of the
transverse components of p1 and p2 is equal to ∆T, and
both the quark and antiquark are on mass shell. Then we
come to the following representation of p1 and p2:

p1+ = zq+ , p1− =
m2

q + p 2
1T

2zq+
,

p1T = rT + z∆T ,

p2+ = (1 − z)q+ , p2− =
m2

q + p 2
2T

2(1 − z)q+

p2T = −rT + (1 − z)∆T . (23)

It follows from (23) that the total mass of the qq̄ pair is
given by the relation

M2
f =

m2
q + r 2

T

z(1 − z)
. (24)

In the rest frame of the scattered q and q̄ (the � meson
rest frame) the three-momentum of any parton is equal
to Mf/2 (when mq = 0). If they are in the state with
the total angular momentum J = 1, JZ = m the angular
dependence of their wave function χ is described with the
Wigner D-function [31]

χm
αβ ∼ D

(1)
α−β,m(cos θ, φ, 0) . (25)

The quark/antiquark helicity is denoted in (25) α/β and θ
(φ) is the polar (azimuthal) angle of the quark momentum.
The standard choice of the axes in the � meson rest frame
is the following. The Z-axis is opposite to the outgoing
proton three-momentum and the Y -axis is normal to the
meson production plane (the plane which is formed by
the three-vectors q and ∆ in the CM system, the Y -axis is
aligned along q×∆). If we represent the relative transverse
momentum of the quark rT in the form rx = |rT| cos ϕ,
ry = |rT| sin ϕ, then one readily gets the relations

φ = ϕ , cos θ = 2z − 1 . (26)

Let the amplitude of the qq̄ pair production with par-
ticle momenta p1, p2 (M2

f = (p1 + p2)2) by the virtual
photon with helicity µ on the proton with helicity n be
Tλ′ν′n′,µn(Q2, W, z, rT,∆T), where λ′, ν′ and n′ denote
the helicities in the HCM system of the outgoing quark,
antiquark and proton, respectively. Then projecting the
qq̄ state onto the 1− state (JZ = m) with the aid of the
D-functions we get the formula for the amplitude

Tmλ′ν′n′,µn(Q2, W, M2
f , t)

=
∫

D∗(1)
ω,m(cos θ, φ, 0)T̃λ′ν′n′,µn(Q2, W, z, rT,∆T)
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H1 ZEUS

E665 NMC SLAC1
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2.5 5 7.5 10 12.5 15 17.5 20

Fig. 1. Comparison of calculated R = σL/σT with high-Q2

data. The solid line is computed in the Regge approach, the
other curves are obtained in [5] within the pQCD framework.
To calculate the dotted and dashed curves, MRST99 [36] and
CTEQ(5M) [37] gluon distributions are used, respectively. Ex-
perimental points show results obtained in electroproduction
at DESY by the H1 [12,28], ZEUS [13,32], HERMES (prelimi-
nary) [29], at SLAC [35] and in muoproduction by the E665 [33]
and NMC [34] collaborations

×dφd cos θ

4π

=
∫ 2π

0

dϕ

2π

∫ 1

0
D∗(1)

ω,m(2z − 1, ϕ, 0)

×T̃λ′ν′n′,µn(Q2, W, z, rT,∆T)dz , (27)

where D∗ denotes the complex conjugate D-function, ω =
λ′ − ν′. The relations (26) are used in (27). The tilde in
(27) reminds the reader that z and rT are not independent
but obey relation (24) since the qq̄ pair has a definite
mass Mf . The spin density matrix of the qq̄ system (of the
produced � meson) according to the von Neumann formula
looks like

ρ
(�)
mm′ = N

∑
λ′,ν′,n′,k,n,µ,µ′

Tmλ′ν′n′,µkρ
(γ)
µµ′ρ

(p)
kn T ∗

m′λ′ν′n′,µ′n ,

(28)
where the normalization factor N can be found from the re-
lation

tr ρ(�) =
∑
m

ρ(�)
mm = 1 . (29)

The virtual photon density matrix ρ
(γ)
µµ′ in the HCM system

was taken from [22] and the proton density matrix ρ
(p)
kn is

given by the unit matrix for the unpolarized proton. The
standard decomposition of ρ

(γ)
µµ′ leads to the decomposition

of the vector-meson density matrix ρ
(�)
mm′ into the matrices

r
(04)
mm′ , r

(1)
mm′ , . . . , r

(9)
mm′ [22].

3 Numerical results and discussion

In this section, we compare the calculation of the spin
density matrix with the available experimental data on ex-
clusive � meson production by leptons to establish the W

Q2, (GeV/c)2

R H1 ZEUS

HERMES PRELIMINARY

CORNELL
EMC E665 NMC CHIO
SLAC1 SLAC2 SLAC3
DESY1 DESY2

10
-1

1

10

10
-1

1

Fig. 2. Comparison of calculation within the Regge approach
with experimental data on R = σL/σT. The solid and dashed
lines are calculated at W = 45 and W = 6 GeV, respectively.
Data are obtained at DESY (H1 [12], ZEUS [13], HERMES
(preliminary) [29], DESY1 [38], DESY2 [42]), at Cornell [39]
and at SLAC (SLAC1 [35], SLAC2 [40], SLAC3 [41]) in ep
scattering and also in µp collisions by the E665 [33], NMC [34],
EMC [43], and the CHIO [44] collaborations

and Q2 regions where the Regge phenomenology approach
is applicable. We start our consideration with the ratio
R = σL/σT of the � meson production cross sections with
the longitudinal and transverse photons. Figure 1 shows
that the high-Q2 data [12,13,28,29,32–35] are in excellent
agreement with the calculations [5] performed within the
perturbative quantum chromodynamics framework. The
errors shown in Fig. 1 represent the statistical and system-
atic errors added in quadrature. The same is done for all
experimental points shown in the present paper. The differ-
ence between the calculations made with the MRST99 [36]
and CTEQ(5M) [37] parton distributions in the proton
demonstrates the order of magnitude of the pQCD calcu-
lation uncertainty. Even if the hard scale is given by rela-
tion (5) the pQCD calculations are not to be applicable at
Q2 < 4 GeV2 since this assumes that Q2

0 ∼ 1 GeV2 for the
light meson production. Strictly speaking, the applicabil-
ity of pQCD for the calculation of the exclusive � meson
production even for Q2 ∼ 10 GeV2 is questionable [6] since
the hard scales Q2

L and Q2
T given by (6) are ∼ 1 GeV2.

Our calculations based on the Regge phenomenology dis-
agree with the available data for Q2 > 4 GeV2, but they
are in reasonable agreement with the experimental data at
Q2 < 4 GeV2. The calculations both in the pQCD frame-
work and within the Regge approach are performed at the
γ∗p collision energy W = 45 GeV. Since the larger part of
the low-Q2 data are obtained for smaller W we calculate
the ratio σL/σT for W = 6 GeV (the HERMES kinemat-
ics) also. We compare the calculations for W = 6 GeV
(the dashed curve) and W = 45 GeV (the solid line) with
the data [12, 13, 28, 29, 32–35, 38–44] at Q2 < 8 GeV2 in
Fig. 2. As is seen from Fig. 2 the Regge approach calcula-
tions with the parameters of the nucleon–reggeon vertices
taken from [15–17] and those of the reggeon trajectories
found in [15–17, 24, 25] are in reasonable agreement with
the available data for Q2 < 4 GeV2. We see also from Fig. 2
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that the difference between the solid and dashed curves is
about equal to or less than the experimental uncertainties.

It is well known that the measured cross section σ is an
admixture of the � meson production cross sections with
the longitudinal (σL) and transverse photons (σT)

σ = σT + εσL , (30)

with ε being the ratio of the fluxes of the longitudinal to
transverse photons:

ε =
1 − y − y2Q2/(4ν2)

1 − y + y2/2 + y2Q2/(4ν2)
≈ 1 − y

1 − y + y2/2
. (31)

The lepton mass in formula (31) is put equal to zero, and
y is the fraction of the incident lepton energy carried by
the photon in the laboratory system (y = (q ·p)/(l ·p) with
l being the lepton four-momentum). If conditions (13)
are fulfilled the approximate equality in (31) is valid.
Measuring σ at different ε but for the same Q2 and W one
can get both σL(Q2, W ) and σT(Q2, W ) and their ratio R.
Instead of this approach the hypothesis that the produced
vector meson has the same helicity as the initial virtual
photon (the SCHC approximation) is commonly used to
get R. Then measuring the density matrix of the produced
meson one gets the ratio R = σL/σT from the relation

R =
1
ε

r04
00

1 − r04
00

. (32)

The definition of the matrix elements ra
αβ can be found

elsewhere [22]. To estimate the difference between the true
ratio of the cross sections and R obtained with the aid
of formula (32), we have calculated R for W = 6 GeV
applying (32). Both ratios are found to coincide within the
7% accuracy at Q2 < 4.5 GeV2. The same comparison for
W = 45 GeVshows that the difference between calculations
is much less than 1% even for Q2 < 8 GeV2.

We discuss the dependence of the matrix elements of
the � meson density matrix on kinematic variables and we
start our consideration from those matrix elements which
are non-zero in the SCHC approximation. The sensitivity of
the matrix elements to the � meson mass is illustrated with
Fig. 3a,b for r04

00 and r1
1−1, respectively. The calculations

were performedat the positronbeamenergyEe = 27.5 GeV
and for y = 0.8 which correspond to the HERMES kine-
matic conditions (W ≈ 6 GeV). As is seen from Figs. 3a,b
the curves describe the preliminary HERMES data [29] and
data from [38, 41, 44] quite well, but there is presumably
some discrepancy between the data [35, 42] and the pre-
sented computations. We should remark that the Regge
phenomenology is applicable to the proton–proton scat-
tering at energies higher than Epp ∼ 10 GeV which cor-
responds to Spp ≈ 20 GeV2. The preliminary HERMES
data were obtained at Sγp = W 2 ≈ 36 GeV2 and the W
region for the CHIO data was 10 < W < 16 GeV; hence
Sγp > 100 GeV2. The low energy data [35, 38, 41, 42] were
obtained at Sγp < 10 GeV2 (the mean value of W for the
data [38, 42] is equal to 2.3 GeV, 〈W 〉 = 2.8–3.14 GeV for
the SLAC data [35, 41]). Hence we should not pretend to
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Fig. 3a–d. Dependence of the spin density matrix elements
r04
00 and r1

1−1 on Q2 and � meson mass m�. The dashed,
solid and dotted curves are calculated at ∆T = 0 for m� =
0.67, 0.77, 0.87 GeV, respectively. All curves in a and b are
computed for the CM energy W = 6 GeV and the curves in
c and d are obtained at W = 45 GeV. Data are from SLAC
(SLAC1 [35], SLAC3 [41],) DESY (DESY1 [38], DESY2 [42],
HERMES (preliminary) [29], H1 [12], ZEUS [13]), Fermilab
(CHIO [44], E665 [33]), and CERN (NMC [34], EMC [43])

describe well the low energy data [35, 38, 41, 42] and even
agreement between the calculations under discussion and
the data [38,41] should be considered as an accidental fact
(some play of statistics). Another important reason why
our calculations do not describe the data at W ∼ 2–3 GeV
is as follows. The parameter cτγ given by (3) is approxi-
mately equal to 1 fm just for W = 2.3 GeV, Q2 = 1 GeV2

and the condition cτγ � rp is not fulfilled (we recall that
c = 1) which makes our approach invalid.

The results of the calculations of the matrix elements
r04
00 and r1

1−1 for the high energy are displayed in Figs. 3c,d.
The curves are computed for W = 45 GeV and compared
with the data from the H1 [12,28], ZEUS [13,32], E665 [33],
NMC [34], and EMC [43] collaborations. The data obtained
at the HERA collider (30 < W < 120 GeV) and the fixed-
target experiment data (W ≈ 18 GeV for E665, 7.7 < W <
18 GeV for NMC, 6 < W < 22.7 GeV for EMC) are placed
together as the W dependence for high energies is rather
flat. The calculations in the model under consideration
confirm such a dependence (for a more detailed discussion
see below).

As is seen from Fig. 3 the difference between the curves
obtained for different m� in any figure is less than the un-
certainty of the available data. The parton–hadron duality
supposes that the matrix elements are to be averaged over
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Fig. 4a–c. Dependence of the � meson density matrix elements
�{r2

1−1}, �{r5
10}, and �{r6

10} on Q2 for different W . The solid,
dashed, dotted anddash-dotted curves are calculated for W = 6,
13.6, 19.3, and 27.4 GeV at ∆T = 0. Data are obtained at DESY
(H1 [12], ZEUS [13], HERMES (preliminary) [29], DESY1 [38],
DESY2 [42]), at SLAC (SLAC1 [35], SLAC3 [41]) and by the
CHIO collaboration [44]

some � meson mass interval (for example in the region
0.63 < m� < 0.91 GeV which was used in the HERMES
experiment [29]). But Fig. 3 shows that one can make use
of a simplified approach applying the mean value of the �
meson mass instead of averaging over some mass region,
besides the accuracy of the simplified calculation being not
worse than the experimental accuracy. From here on, all
our calculations are carried out for m� = 0.77 GeV.

Comparing the curves inFig. 3awhich correspond to the
relatively low energy (W = 6 GeV) with those in Fig. 3c
obtained at W = 45 GeV (or the curves in Fig. 3b with
the curves in Fig. 3d) we conclude that the behavior of the
curves is changed with increasing the center-of-mass energy
and the curves describe quite reasonably both the data at
W ≈ 6 GeV and the high energy data (18 < W < 92 GeV)
for Q2 < 4 GeV2. As was observed experimentally in [13]
there is practically noW dependence of r04

00, r
1
1−1 and r5

10 be-
tween W = 27.5 GeV and W = 92 GeV for Q2 < 6.2 GeV2.
Our calculations confirm this observation. Therefore we
may present in Figs. 3c,d the data obtained by H1, ZEUS,
E665, NMC, EMC at different (but high) energies together.
We see also from a comparison of Figs. 3b,d with Figs. 3a,c
that the calculations reproduce the W dependence of r1

1−1
even better than that of r04

00 for Q2 up to 7 GeV2.
In the SCHC approximation when only natural parity

exchanges in the t-channel are taken into account, the ma-
trix elements r04

00 and r1
1−1 are not independent but they

obey the relation

1 − r04
00 − 2r1

1−1 = 0 , (33)

which is satisfied within approximately 1.6 standard devi-
ation [13]. This means that Figs. 3a–d show the behavior
of one independent matrix element only. Figures 4a,b show
the sensitivity of two other independent matrix elements,

{r2

1−1} and �{r5
10}, to the center-of-mass energy, W . The

calculations were performed for the electron beam energy
Ee = 2000 GeV at y = 0.01, 0.05, 0.1, and 0.2 which cor-
respond to the total hadronic masses W ≈ 6, 13.6, 19.3,
and 27.4 GeV. It is easy to see that there is practically
no W dependence in the region under discussion where
the contribution of the secondary reggeons (�, ω, A2 and
f mesons) could lead to a sensitivity of the density ma-
trix to the center-of-mass energy. For higher energy, where
the pomeron contribution to the amplitudes of reaction
(1) dominates, the W dependence is to be very smooth
also. We do not divide the data into low and high en-
ergy parts since 
{r2

1−1} and �{r5
10} are approximately

independent of W . As is seen from Figs. 4a,b, there is un-
expectedly excellent agreement of the calculations with
the data obtained at the HERA collider by the H1 and
ZEUS collaborations. The curves describe well the low en-
ergy data [35,38,41,42] on 
{r2

1−1}, the data [35,41] agree
with the calculations of �{r5

10}; meanwhile, the curves do
not describe the data [38, 42] on �{r5

10}. Nevertheless no
definite conclusion about the data quality can be made
since the Regge phenomenology fails to describe the data
at W < 4 GeV as was discussed above.

The matrix element 
{r6
10} obeys the relation


{r6
10} = −�{r5

10} (34)

valid in the SCHC approximation which was checked exper-
imentally with high accuracy [13] (with the statistical and
systematic errors equal to 0.005 and 0.013, respectively).
In our approach, relation (34) is precise for ∆ 2

T = 0 and
becomes approximate at t < 0 with a relative accuracy ∼ a
few per cents for |t| ∼ 0.1–0.2 GeV2 (typical experimental
mean values of |t|). It follows from the above discussion
that 
{r6

10} does not give any absolutely new information
compared with that provided with �{r5

10}. Figure 4c shows
a comparison of the calculation performed within the Regge
approach with the data on 
{r6

10}. The curves presented
in Figs. 4b,c obey relation (34). As is seen from Fig. 4c the
high energy data [12,13,44] are rather well described with
the curves. The difference between calculation and the H1
point at Q2 = 3 GeV2 (about three standard deviations) is
probably nothing else than the play of statistics. The low
energy data [35, 41] agree reasonably with the presented
curves; meanwhile, the data [38, 42] are in disagreement
with the calculations. But since the Regge phenomenology
loses its applicability for W < 4 GeV no definite statements
can be formulated.

To characterize the violation of the S-channel helicity,
let us define three small dimensionless parameters:

ξ01 =
|T01|√|T00|2 + |T11|2

,
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ξ10 =
|T10|√|T00|2 + |T11|2

,

ξ−11 =
|T−11|√|T00|2 + |T11|2

, (35)

which correspond to the transition of the transverse photon
to the longitudinal � meson, the longitudinal photon to the
transverse vector meson, and double helicity flip transition,
respectively. The symbolic notation |Tmµ| is applied in (35)
for the quantities

|Tmµ| =
√ ∑

λ′,ν′,n′,n

|Tmλ′ν′n′,µn|2 , (36)

where the amplitudes Tmλ′ν′n′,µn were defined in (27). It
is more convenient from the experimental point of view to
introduce the following small parameters [13]:

γ01 =
|r5

00|√
2r04

00

,

γ10 =
|�r04

10 + �r1
10|√

r04
00

,

γ−11 =
|r1

11|√
2r1

1−1

. (37)

If the value of ε defined by (31) is close to unity and the
parameters ξmµ are small enough, then the parameters γmµ

are approximately equal to ξmµ with high accuracy. For
the HERA collider kinematics, the relative errors of the
relations γmµ ≈ ξmµ are less than 10% (typically 1–2%).
The parameters ξ01, ξ10, and ξ−11 versus Q2 for different
values of t are presented in Figs. 5a–c, respectively. All
the quantities ξmµ vanish when the transverse momentum
transfer, ∆T is equal to zero. Hence it is very important to
know a domain of −t ≈ ∆2

T for which the parameter γmµ is
measured. The experimental values of γ01, γ10, and γ−11 are
presented in Figs. 5a–c, respectively. The ZEUS data [13]
were obtained at 〈Q2〉 = 0.41 GeV2, 〈−t〉 = 0.14 GeV2

and for 〈Q2〉 = 6.3 GeV2, 〈−t〉 = 0.17 GeV2, where 〈Q2〉
and 〈−t〉 denote the experimental means of Q2 and −t,
respectively. The t region of the data [12] obtained by
the H1 collaboration is 0 < −t < 0.5 GeV2 but 〈−t〉 ≤
0.2 GeV2 since the slope parameter, b, of the differential
cross section for 1.8 < Q2 < 10.9 GeV2 is within the region
5.6 ≤ b ≤ 8 GeV−2 [12]. A comparison of the curves with
the data shows that they are in agreement.

Owing to the large experimental uncertainty of the
modern data we cannot conclude that the available exper-
imental data confirm unambiguously our prediction for the
scale of the SCHC violation. The only statement which can
be made is that there is no discrepancy between the calcula-
tions and the data. More constructive could presumably be
a comparison of our calculations with the estimates of the
parameters ξ01, ξ10, ξ−11 in the framework of perturbative
QCD. Indeed, if our approach gives reasonable estimates
for the SCHC violation parameters, then they should not
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Fig. 5a–c. Comparison of the parameters of SCHC violation
ξ10, ξ01, and ξ−11 with their experimental estimates γ10, γ01

and γ−11. The parameters ξmµ and γmµ are defined by (35)
and (37), respectively. The calculations were performed for the
HERA collider kinematics at W = 45 GeV. The solid, dashed,
dotted and dash-dotted curves correspond to |t| = 0.05, 0.1,
0.15, 0.25 GeV2. Experimental points are from ZEUS [13] and
H1 [12]

disagree with the predictions of pQCD at Q2 ≈ 4 GeV2.
If we put the formulae (25), (26), (27), (28), and (30) for
T01, T10, and T−11 of [45] into (35), we get

ξ01 =
∆T/m�√
1 + Q2/m2

�

, (38)

ξ10 =
∆T

m�

Q/m�

(1 + Q2/m2
�)3/2 , (39)

ξ−11 =
∆2

T/m2
�

(1 + Q2/m2
�)3/2 (40)

×
[

3
2
〈(z − 1/2)2〉 +

m2
�

µ2
G

G(x, µ2
G)

G(x, Q2
V )

(1 + Q2/m2
�)

]
,

where Q2
V ∼ (0.1–0.2)(Q2 + m2

�) and the parameter µG ∼
0.7–1.0 GeV. The quantity 〈(z−1/2)2〉 in (40) is the result
of averaging (z−1/2)2 over the light-cone wave function of
the � meson. The parameter ξ−11 has the contribution of
non-perturbative effects and therefore contains the gluon
density G(x, µ2

G) on the non-perturbative scale µG which
does not depend on Q2. For rough estimates at Q2 ∼
4 GeV2, we put the ratio G(x, µ2

G)/G(x, Q2
V ) equal to unity

since Q2
V ∼ µ2

G ∼ 1 GeV2. We make use of the self-evident
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inequality 〈(z−1/2)2〉 < 0.25 and get from (40) the relation

ξ−11 ≤ ∆2
T/m2

�

(1 + Q2/m2
�)3/2

[
3
8

+ (1 + Q2/m2
�)
]

. (41)

Formulae (38), (39) and (40) predict that ξ01, ξ10 are pro-
portional to ∆T and ξ−11 ∝ ∆2

T. As is seen from Fig. 5 the
calculated ξ01, ξ10, and ξ−11 have a more complicated de-
pendence on ∆T since one, two and three reggeon exchanges
are taken into account which leads to the non-trivial t
dependence of ξmµ. It is easy to see from Figs. 5a–c that
ξ01 > ξ10 > ξ−11. This hierarchy in the framework of pQCD
was presumably discussed for the first time in [7, 45]. To
compare our calculations of the SCHC violation parameters
with the prediction of (38), (39) and (41), we consider
one reggeon exchange approximation which corresponds
to the ladder graph in pQCD. We consider the small ∆T
to have the regime ξ01 ∝ ∆T, ξ10 ∝ ∆T, ξ−11 ∝ ∆2

T.
For Q2 = 4.5 GeV2, ∆T = 0.04 GeV, we get in the Regge
phenomenology approach ξRegge

01 = 0.009. Formula (38)
gives ξQCD

01 = 0.018 which is in reasonable agreement with
the value of ξRegge

01 . For ξ10 we get ξRegge
10 = 0.003 and

ξQCD
10 = 0.006. Both values have the same order of magni-

tude. For the parameter of the double spin-flip contribu-
tion, we have ξRegge

−11 = 0.0001; meanwhile, formula (41)
gives ξQCD

−11 = 0.001, which is greater by as much as an
order of magnitude than in the Regge approach. The pure
perturbative contribution to ξQCD

−11 (the term proportional
to 3/8 in formula (41)) is equal to 0.00004. This value
does not disagree sharply with ξRegge

−11 . Though the QCD
estimate has a large theoretical uncertainty due to non-
perturbative contributions to ξ−11, nevertheless our esti-
mate of the parameter of the double spin-flip contribution
is probably unreliable.

The deviation from the SCHC approximation was ex-
perimentally observed in studying the Φ distribution (Φ
is the angle between the lepton scattering plane and the
meson production plane). It was found [12, 13] that the
only non-zero matrix element among those which are to be
zero in the SCHC approximation is r5

00. The combinations
of the matrix elements most reliably measured in the Φ
distribution are as follows:

r5 = 2r5
11 + r5

00 , r1 = 2r1
11 + r1

00 . (42)

They are presented in Figs. 6a,b versus Q2 for different
values of t. The data [12] were obtained for 〈−t〉 ∼ 0.15–
0.2 GeV2. As is seen from Fig. 6a (dotted and dash-dotted
curves) our calculations predict non-zero values for r5 which
are in agreement with the data. The calculated values of
r1 at Q2 > 2 GeV2 are much smaller than those of r5 as
it follows from a comparison of Fig. 6b with Fig. 6a. The
experimental data for r1 are also in agreement with the
presented calculations.

As has been mentioned above the vector-meson electro-
production at high energies and high photon virtualities
Q2 is successfully described within the perturbative QCD
framework even for low t. The factorization theorem [46]
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Fig. 6a,b. Comparison of the combinations of matrix elements
ra

jk with H1 data. The quantities r1 and r5 are defined in (42);
the data are from [12]. The calculations are carried out for
HERA kinematics at W = 45 GeV, solid, dashed, dotted, and
dash-dotted curves being computed for |t| = 0.05, 0.1, 0.15,
0.25 GeV2, respectively

justifies the applicability of pQCD to the amplitude T00
of the longitudinally polarized meson production with the
longitudinally polarized photon (the spin quantum num-
bers of the proton are omitted since they are unimportant
for our consideration). There is no rigorous proof up to now
that the pQCD contribution to the amplitudes T±1±1 of
the transverse photon transition to the vector meson with
the transverse polarization dominates at high Q2 but this
is presumably the case. It was assumed in [5] that the Q2

dependence of the gluon density in the proton at small x
looks like

xG(x, Q2) = xG(x, Q2
0)(Q

2/Q2
0)

γ , (43)

where Q0 is a hard scale and γ is the anomalous dimen-
sion. Assumption (43) makes the integrals defining the
amplitudes T11 and T−1−1 convergent at γ > 0 [5,7]. The
gluon distribution of the MRS set of parton densities [47]
can be really described with relation (43) with positive γ
depending on Q2. Strictly speaking formula (43) has to be
valid at Q2 → 0; otherwise the integrals for the amplitudes
T±1±1 are divergent and the problem of treating end-point
singularities arises.

Scattering of the colorless qq̄ pair on the proton is de-
scribed in the pQCD approach through two gluon exchange
and the greatest helicity amplitudes (not all of them) of
reaction (1) are proportional to the gluon density in the tar-
get. It is well known that two gluon exchange corresponds to
pomeron exchange. The secondary reggeon contributions
are suppressed by a factor ∼ M/W at high W . Hence agree-
ment between our calculations and those performed within
the pQCD framework can be checked at high energies. We
compare our calculations of the spin density matrix ele-
ments of the produced �0 mesons with other theoretical
predictions in Fig. 7. Solid lines present results of our cal-
culations performed at W = 75 GeV, −t = 0.15 GeV2, and
m� = 0.77 GeV. Bullets and circles show the HERA data
from H1 and ZEUS [12,13]. The triangles show the results of
calculations by Ivanov and Kirschner [7] at Q2 = 10 GeV2,
−t = 0.167 GeV2 and W = 100 GeV. Two triangles in ev-
ery figure correspond to γ = 0.5 and γ = 0.7. They coincide
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Fig. 7. Comparison of Regge phenomenology predictions with
calculations in the pQCD framework. The solid lines show the
results of the present work, triangles are obtained by Ivanov and
Kirschner [7], dash-dotted curves present calculations by Niko-
laev and Ivanov [10,11], dotted curves are computed by Ivanov
and Kirschner [49], and dashed curves show the prediction of
Royen [50]. Data are from ZEUS [13] and H1 [12]

with each other for �r5
10, r5, r1, and r1

11 (r1 and r5 are
related to rβ

jk by (42)). It is easy to see that there is some dif-
ference between the triangles and our curves. But this differ-
ence could not be considered as the difference between the
Regge approach and the perturbative QCD calculations.
Indeed, the results of the work [7] are in some disagree-
ment with those by Nikolaev and Ivanov [10, 11] made in
the perturbative QCD framework also and presented with
the dash-dotted curves. The difference is probably related
to the approximations used in [7]. Since the heavy photon
dissociates into the quark and antiquark with small trans-
verse distance the transition amplitude is sensitive to the
vector-meson wave function at small transverse distances.
The wave function of the � meson was decomposed in a
power series with respect to the transverse distance in [7].
In [10,11], oscillator wave functions [48] having S- and D-
wave components were used and numerical calculations of
all integrals were performed without any decomposition of
the integrands into a power series. One can see that our
calculations agree much better with the results by Niko-
laev and Ivanov than with the calculations by Ivanov and
Kirschner for high Q2.

The calculations based on perturbative QCD have to
use somemodel for the qq̄ component of thewave function of
the vector meson. Therefore the results of the calculations
become model dependent. The most crucial contributions
to the amplitudes are probably the contributions of the
so-called end-point singularities which are sensitive to the
behavior of the vector-meson wave function at z → 0 and
z → 1. They were considered in [49]. The results of the
calculations of r04

00, r1, and r5 made in [49] are presented
in Fig. 7 with the dashed curves. Comparison of the dash-
dotted and dashed curves shows the order of magnitude of
the uncertainty of the modern theoretical calculations per-
formed in the pQCD framework. The dotted curves present
the results of computing the spin density matrix elements at
HERA collider energies and −t = 0.138 GeV2 by Royen [50]
in the QCD motivated model. In this work, a phenomeno-
logical vertex instead of the gluon distribution G(x, Q2) is
used to describe the interaction of two gluons with quarks
in the proton. The vertex function instead of the wave
function is used in [50] to describe the transition of the qq̄
pair into the �0 meson, the helicity structure of the vertex
being given by the Dirac matrices γµ. As is seen from Fig. 7
the calculations made in [10,11,50] are in reasonable agree-
ment with ours for r04

00, r1
1−1, 
r2

1−1, �r5
10, and 
r6

10 which
are non-zero in the SCHC approximation. It is surprising
that the solid and dash-dotted curves coincide practically
with each other at 0.2 < Q2 < 20 GeV2 for r5 which is the
greatest matrix element violating SCHC and proportional
to the small spin-flip amplitude T01 (γ∗

T → �L). For the
quantity r5, there is some difference between the dotted
curve and the solid or dash-dotted curve, but all three cal-
culations do not contradict the HERA data. Considering
the description of r1 and r1

11 we see that the difference be-
tween the Regge phenomenology prediction and the pQCD
motivated calculations [10,11,50] is less than between the
curves obtained in [10, 11, 50]. The last matrix element
r1
11 in Fig. 7 is proportional to the small double spin-flip
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amplitude T1−1 = T−11, and hence gives the most direct
information about its value. One can see that our calcu-
lations are in agreement with the data, while the calcula-
tions [10, 11] demonstrate probably some deviation from
the ZEUS result at Q2 < 1 GeV2. The calculation of [50]
gives zero for r1

11 since the double spin-flip amplitude T1−1
was put equal to zero.

We conclude from the comparison of different predic-
tions for the spin density matrix that the difference between
our results and the pQCD motivated calculations is of the
same order of magnitude as the difference between those
obtained in the perturbative QCD framework. Our calcula-
tions describe the high energy and high-Q2 HERA data on
the spin density matrix elements except r04

00 not worse than
the pQCD motivated calculations. The Regge approach is
more phenomenological and gives no fundamental infor-
mation about the proton structure, but it can be used for
relatively low energies where secondary reggeons contribute
to the amplitude of the vector-meson leptoproduction. Our
calculations can be useful for instance in the Monte Carlo
estimations of relative contribution of the �0 meson pro-
duction to semi-inclusive deep inelastic scattering.

4 Conclusions

The model for the description of the exclusive leptoproduc-
tion of � mesons on nucleons has been considered. In this
model, the virtual photon dissociation into the qq̄ pair is
described with the light-cone wave function, and the am-
plitude of scattering of the colorless qq̄ system on the nu-
cleon is calculated within Regge phenomenology. One, two,
and three reggeon exchanges between the quark–antiquark
pair and the nucleon have been taken into account. The
parameters of the quark–reggeon vertices were obtained
from those of the nucleon–reggeon vertices within the naive
quark model. The parameters of the nucleon–reggeon ver-
tices and the Regge trajectories were found in the seventies
from an investigation of hadron–nucleon scattering at beam
energies 10–100 GeV and |t| ≤ 0.5 GeV2. No free parame-
ters have been used in the present calculations. The final
state of the colorless qq̄ pair is projected onto the state
with JP = 1− and isospin I = 1 to calculate the � me-
son spin density matrix with the aid of the parton–hadron
duality concept.

It is shown that the model works well at the total en-
ergy of the photon–nucleon scattering in the CM system
W > 4 GeV, where the Regge phenomenology is known
to be applicable. The calculations performed in the Regge
approach are in reasonable agreement with the world data
on the ratio R = σL/σT (which is equivalent to the data on
r04
00 in the SCHC approximation) at Q2 < 4 GeV2 where

perturbative QCD is, strictly speaking, inapplicable. The
present calculations of σL/σT disagree with the available
experimental data for Q2 > 4 GeV2 which are well de-
scribed with pQCD. The Regge approach calculations of
the spin density matrix elements ra

jk other than r04
00 and

the world data at W > 4 GeV are in good agreement up to
Q2 = 8 GeV2. The predictions of the present model agree
unexpectedly well with the experimental data at the HERA

collider energies for 0.5 < Q2 < 20 GeV2. The difference
between calculations of the spin density matrix in our ap-
proach and the pQCD motivated calculations is within
the uncertainties of the theoretical results obtained in the
perturbative QCD framework. The amplitudes computed
in the Regge phenomenology approach do not conserve
the S-channel helicity, but the parameters of the SCHC
violation are small, their values being in reasonable agree-
ment with the experimental data. The calculations of the
SCHC violation parameters ξ10, ξ01 in the perturbative
QCD framework and in the Regge approach do not con-
tradict each other. There is probably some disagreement
between the two approaches for the case of the double
spin-flip parameter ξ−11.
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